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Abstract

A new 9-point sixth-order accurate compact finite-difference method for solving the Helmholtz equation in one and two

dimensions, is developed and analyzed. This scheme is based on sixth-order approximation to the derivative calculated

from the Helmholtz equation. A sixth-order accurate symmetrical representation for the Neumann boundary condition

was also developed. The efficiency and accuracy of the scheme is validated by its application to two test problems which

have exact solutions. Numerical results show that this sixth-order scheme has the expected accuracy and behaves robustly

with respect to the wave number.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The Helmholtz equation, ðDþ k2
Þu ¼ f , is an elliptic partial differential equation which is a time-harmonic

solution of the wave equation. The Helmholtz equation governs some important physical phenomena. These
include the potential in time harmonic acoustic and electromagnetic fields, acoustic wave scattering, noise
reduction in silencers, water wave propagation, membrane vibration and radar scattering. Obtaining an
efficient and more accurate numerical solution for the Helmholtz equation has been the subject of many
studies. The numerical solution of the Helmholtz equation has been developed using different approaches such
as the finite-difference method [1], the boundary element method [2], the finite-element method [3] and the
spectral-element method [4].

The boundary element method is derived through the discretization of an integral equation that is
mathematically equivalent to the original partial differential equation. The disadvantages of boundary
element methods are the restriction to linear problems in homogeneous and isotropic media, as well as the
large computer storage space required and lengthy processing time needed to solve the inherent problems
encountered with characteristic wave numbers.

Finite-element methods are used extensively to solve the Helmholtz equation. In addition to the high-
computational cost, another disadvantage of Galerkin finite-element method for solving the Helmholtz
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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equation is the so-called pollution effect, which results in the less accurate solution at higher wave numbers for
the given nodes per wavelength. Thus, in order to obtain the same solution accuracy for higher wavenumbers,
more nodes per wavelength are needed than that for the lower wavenumbers [5,6]. Although some
modification in the standard Galerkin approximation have been developed to minimize the pollution effect [8],
finding an optimal method is still a challenge [7].

For spectral element methods, it is shown that it requires fewer grid nodes per wavelength compared to the
finite-element methods for the Helmholtz equation [4]. However, due to the less sparse resultant matrix compared
to the resulting finite-element matrix, the computational time of both methods are almost the same [4].

For the traditional finite-difference methods, in order to increase the order of accuracy of approximation,
the stencil of grid points needs to be enlarged, which is not desirable.

Generally, obtaining a more accurate numerical solution means adding more nodes and using smaller mesh
sizes, which requires more computing time and storage space. In order to obtain more accurate results for
constant mesh size, we need to increase the order of accuracy of the numerical approximation, which, in turn,
means enlarging the stencil of grid points. This, however, leads to some problems including difficult treatments
of the boundary conditions and approximation of the points next to the boundaries, and increasing the
bandwidth of the stiffness matrix, which makes fast direct solver difficult. Therefore, compact finite difference
schemes are desired to solve partial differential equation numerically.

A noticeable work in this field has been done by Turkel and Singer [1]. They developed a fourth-order
compact finite-difference method using two schemes. One scheme was based on the generalization of the Padé
approximation and the other used the Helmholtz equation to calculate higher-order correction terms. They
implemented these schemes for Dirichlet and/or Neumann boundary conditions. In the present study we
extended the previous work and developed a new scheme to increase the accuracy to the order of six without
enlarging the stencil of grid points. We have developed and implemented a new 9-point stencil, sixth-order
accurate compact finite-difference method for solving the Helmholtz equation in the one-dimensional and
two-dimensional domain with Dirichlet and/or Neumann boundary conditions. Recently, Sutmann [9] has
reported a sixth-order compact finite-difference scheme for Helmholtz equation. However, he implemented his
scheme only with Dirichlet boundary conditions. As far as the authors know, the present study is the first that
developed a sixth-order compact finite-difference scheme with the Neumann boundary conditions.

2. Nine-point sixth-order accurate compact finite-difference scheme

This method is based on a sixth-order accurate approximation to the derivative calculated from the
Helmholtz equation. We developed the scheme for both one-dimensional and two-dimensional uniform
Cartesian grids with grid spacing Dx ¼ Dy ¼ h. The notation dx0 is used to denote the first-order central
difference with respect to x, which is defined as

dx0ui ¼
uiþ1 � ui�1

2h
, (1)

where ui ¼ uðxiÞ. The standard second-order central difference is denoted by d2x and is defined as

d2xui ¼
uiþ1 � 2ui þ ui�1

h2
. (2)

Difference operators dy0 and d2y are defined similarly.

2.1. One-dimensional case

In one-dimensional case, the Helmholtz equation becomes the following ordinary differential equation

u00 þ k2u ¼ f ðxÞ for x 2 ½a; b�. (3)

A sixth-order accurate finite-difference estimate of Eq. (2) is

d2xui ¼ u00i þ
h2

12
u
ð4Þ
i þ

h4

360
u
ð6Þ
i þOðh6

Þ. (4)
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Both Oðh2
Þ and Oðh4

Þ terms are included in Eq. (4), because we want to approximate all of them in order to
construct an Oðh6

Þ scheme. Applying d2x to u
ð4Þ
i , we get

u
ð6Þ
i ¼ d2xu

ð4Þ
i þOðh2

Þ. (5)

Substituting Eq. (5) into Eq. (4) yields

d2xui ¼ u00i þ
h2

12
u
ð4Þ
i þ

h4

360
ðd2xu

ð4Þ
i þOðh2

ÞÞ þOðh6
Þ. (6)

To get a compact Oðh6
Þ approximation, we simply take the appropriate derivative of Eq. (3), that is

u
ð4Þ
i ¼ �k2u00i þ f 00i , (7)

where f i ¼ f ðxiÞ and f 00i ¼ f 00ðxiÞ. Inserting Eq. (7) into Eq. (6) will result in

d2xui ¼ u00i þ
h2

12
þ

h4

360
d2x

� �
ð�k2u00i þ f 00i Þ þOðh6

Þ. (8)

Then, a compact (implicit) approximation for u00i with a sixth-order accuracy will be given as

u00i ¼

d2xui �
h2

12
1þ

h2

30
d2x

� �
f 00i

1�
k2h2

12
1þ

h2

30
d2x

� �� �þOðh6
Þ. (9)

Using this estimate and considering the discrete solution of Eq. (3) which satisfies the approximation, we get

d2xUi þ k2 1�
k2h2

12
1þ

h2

30
d2x

� �� �
Ui ¼ 1�

k2h2

12
1þ

h2

30
d2x

� �� �
f i þ

h2

12
1þ

h2

30
d2x

� �
f 00i , (10)

k2 1�
k2h2

12

� �
Ui þ 1�

k4h4

360

� �
d2xUi ¼ 1�

k2h2

12

� �
f i �

k2h4

360
d2xf i þ

h2

12
f 00i þ

h4

360
d2xf 00i , (11)

where Ui is the discrete approximation to ui satisfying the discrete formulation of Eq. (3) which implies,
ui ¼ Ui þOðh6

Þ. Using Eq. (2) and d2xf 00i ¼ ðf
00
iþ1 � 2f 00i þ f 00i�1Þ=h2, we can express the scheme in the following

form:

d10Ui þ d11ðUiþ1 þUi�1Þ ¼ b10f i þ b11ðf iþ1 þ f i�1Þ þ b12f 00i þ b13ðf
00
iþ1 þ f 00i�1Þ, (12)

where

d10 ¼ �2þ k2h2 1�
28k2h2

360

� �
; d11 ¼ 1�

k4h4

360
,

b10 ¼ 1�
28k2h2

360

� �
h2; b11 ¼

�k2h4

360
; b12 ¼

28h4

360
; b13 ¼

h4

360
. ð13Þ

Since f and f 00 are known at every grid point, the right-hand side of Eq. (12) is known for all nodes. The system
equations given by Eq. (12) can be written for each node and a resultant linear system of equations is obtained.
In the cases where f is not known analytically, only a fourth-order accurate approximation of f 00 is required,
which can be obtained using f 00i ¼ ð�f iþ1 þ 16f iþ1=2 � 30f i þ 16f i�1=2 � f i�1Þ=12h2.

2.2. Two-dimensional case

Consider the two-dimensional Helmholtz equation

q2u

qx2
þ

q2u
qy2
þ k2uðx; yÞ ¼ f ðx; yÞ for x 2 ½a; b� and y 2 ½c; d�. (14)
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We want to have a 9-point stencil which is symmetrical in both x and y directions. The central difference
scheme for Eq. (14) in two dimensions can be written as

d2xui;j þ d2yui;j þ k2ui;j þ Ti;j ¼ f i;j, (15)

where ui;j ¼ uðxi; yjÞ; f i;j ¼ f ðxi; yjÞ and

Ti;j ¼ �
h2

12

q4u
qx4
þ

q4u
qy4

� �
i;j

�
h4

360

q6u
qx6
þ

q6u
qy6

� �
i;j

þOðh6
Þ. (16)

Using the following appropriate derivatives of Eq. (14):

q4u

qx4
¼

q2f

qx2
� k2 q

2u

qx2
�

q4u
qx2qy2

;
q4u

qy4
¼

q2f
qy2
� k2 q

2u

qy2
�

q4u

qy2qx2
(17)

in Eq. (16), we get

Ti;j ¼ �
h2

12
r2f i;j � 2

q4u
qx2qy2

� �
i;j

� k2 q2u
qx2
þ

q2u
qy2

� �
i;j

 !
�

h4

360

q6u
qx6
þ

q6u

qy6

� �
i;j

þOðh6
Þ. (18)

In our derivation of an Oðh6
Þ scheme, we need a fourth-order approximation of q4u=qx2qy2 in Eq. (18) which

can be written as

q4u

qx2qy2

� �
i;j

¼ d2xd
2
yui;j �

h2

12

q6u
qx4qy2

þ
q6u

qx2qy4

� �
i;j

þOðh4
Þ. (19)

Substituting Eq. (19) into Eq. (18), we get

Ti;j ¼
h2

12
ð�r2f i;j þ 2d2xd

2
yui;j þ k2f i;j � k4ui;jÞ

�
h4

360

q6u

qx6
þ 5

q6u
qx4qy2

þ 5
q6u

qx2qy4
þ

q6u
qy6

� �
i;j

þOðh6
Þ. ð20Þ

Clearly, getting a compact sixth-order approximation requires compact expressions of the four derivatives of
order six in Eq. (20), which can be done by further differentiating Eq. (14), that is

q4f
qx2qy2

¼
q6u

qx4qy2
þ

q6u
qx2qy4

þ k2 q4u

qx2qy2
, (21)

q6u

qx6
þ

q6u
qy6
¼ r4f � k2 q4u

qx4
þ

q4u
qy4

� �
�

q6u

qx4qy2
þ

q6u

qx2qy4

� �
. (22)

Substituting Eqs. (17), (21) into Eq. (22) gives us

q6u

qx6
þ

q6u
qy6
¼ r4f �

q4f
qx2qy2

� k2
r2f þ k4

ð�k2uþ f Þ þ 3k2 q4u

qx2qy2
. (23)

Using Eqs. (21), (23), we can eliminate all the derivatives of u in Eq. (20), that is

Ti;j ¼
h2

12
ð�r2f i;j þ 2d2xd

2
yui;j þ k2f i;j � k4ui;jÞ

�
h4

360
r4f i;j þ 4

q4f
qx2qy2

� �
i;j

� k2
r2f i;j þ k4f i;j � k6ui;j � 2k2d2xd

2
yui;j

 !
þOðh6

Þ. ð24Þ

The compact sixth-order approximation of the two-dimensional Helmholtz equation can thus be obtained as:

h2

6
1þ

k2h2

30

� �
d2xd

2
yUi;j þ ðd

2
x þ d2yÞUi;j þ k2 1�

k2h2

12
þ

k4h4

360

� �
Ui;j

¼ 1�
k2h2

12
þ

k4h4

360

� �
f i;j þ

h2

12
1�

k2h2

30

� �� �
r2f i;j þ

h4

360
r4f i;j þ

h4

90

q4f
qx2qy2

� �
i;j

, ð25Þ
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where Ui;j is the discrete approximation to ui;j satisfying the discrete formulation of Eq. (14) which means
ui;j ¼ Ui;j þOðh6

Þ. As it is seen, we can express the equation in the form of

d20Ui;j þ d21D1 þ d22D2 ¼ b20f i;j þ b21r
2f i;j þ b22r

4f i;j þ b23
q4f

qx2qy2

� �
i;j

, (26)

where

D1 ¼ Uiþ1;j þUi�1;j þUi;jþ1 þUi;j�1,

D2 ¼ Uiþ1;jþ1 þUi�1;jþ1 þUiþ1;j�1 þUi�1;j�1,

B1 ¼ f iþ1;j þ f i�1;j þ f i;jþ1 þ f i;j�1,

B2 ¼ f iþ1;jþ1 þ f i�1;jþ1 þ f iþ1;j�1 þ f i�1;j�1, ð27Þ

then we get

d20 ¼ �
10

3
þ k2h2 46

45
�

k2h2

12
þ

k4h4

360

� �
; d21 ¼

2

3
�

k2h2

90
; d22 ¼

1

6
þ

k2h2

180
,

b20 ¼ h2 1�
k2h2

12
þ

k4h4

360

� �
; b21 ¼

h4

12
1�

k2h2

30

� �
; b22 ¼

h6

360
; b23 ¼

h6

90
. ð28Þ

If we write the system equations given by Eq. (26) for each node, we can obtain the final linear system of
equations. In the cases where f is not known analytically, only a fourth-order accurate approximation of r2f

and a second-order accurate approximation of r4f and q4f =qx2qy2 are required.

2.3. Sixth-order accurate approximation of the boundary

We like to approximate the boundary conditions with the same accuracy as the interior nodes. For the
Dirichlet boundary condition, we can simply put the boundary for every node on the boundary. For the
Neumann boundary condition, the sixth-order approximation is conducted for both one-dimensional and
two-dimensional cases.

2.3.1. One-dimensional case

For a Neumann boundary condition in one dimension, we assume

u0ðx0Þ ¼ b ðb a constantÞ. (29)

The sixth-order approximation of Eq. (29) is

dx0ui ¼ u0i þ
h2

6
u000i þ

h4

120
u
ð5Þ
i þOðh6

Þ, (30)

dx0ui ¼ u0i þ
h2

6
u000i þ

h4

120
d2xu000i þOðh2

Þ
� �

þOðh6
Þ. (31)

Differentiating Eq. (3), we get

u000i ¼ �k2u0i þ f 0. (32)

Using Eq. (32) in Eq. (31), we get

dx0ui ¼ 1�
k2h2

6

� �
u0 �

k2h4

120
d2xu0i þ

h2

6
1þ

h2

20
d2x

� �
f 0i þOðh6

Þ. (33)

Using d2xu0i ¼ u000i þOðh2
Þ and Eq. (32) in Eq. (33) gives us

dx0ui ¼ 1�
k2h2

6
þ

k4h4

120

� �
u0i þ

h2

6
1�

h2

20

� �
f 0i þ

h4

120
d2xf 0i þOðh6

Þ. (34)



ARTICLE IN PRESS
M. Nabavi et al. / Journal of Sound and Vibration 307 (2007) 972–982 977
Using d2xf 0i ¼ ðf
0
iþ1 � 2f 0i þ f 0i�1Þ=h2

þOðh2
Þ and Eq. (1) will result in

uiþ1 � ui�1

2h
¼ 1�

k2h2

6
þ

k4h4

120

� �
u0 þ

h2

6

9

10
�

k2h2

20

� �
f 0i þ

h2

120
ðf 0iþ1 þ f 0i�1Þ þOðh6

Þ. (35)

Considering discrete formulation and using Eq. (29) for i ¼ 0, we get

d11ðU1 �U�1Þ ¼ 2hbd11 1�
k2h2

6
þ

k4h4

120

� �
þ

h3

3
d11

9

10
�

k2h2

20

� �
f 00 þ

h3

60
d11ðf

0
1 þ f 0�1Þ. (36)

We wish to eliminate U�1 because we do not have equations at point x�1. Using Eq. (12) for i ¼ 0, we get:

d11ðU1 þU�1Þ þ d10U0 ¼ b10f 0 þ b11ðf 1 þ f �1Þ þ b12f 000 þ b13ðf
00
1 þ f 00�1Þ. (37)

We use Eqs. (36), (37) to eliminate U�1 and get the desired approximation for the boundary point x0, that is

2d11U1 þ d10U0 ¼ 2hbd11 1�
k2h2

6
þ

k4h4

120

� �
þ b10f 0 þ b11ðf 1 þ f �1Þ

þ
h3

3
d11

9

10
�

k2h2

20

� �
f 00 þ

h3

60
d11ðf

0
1 þ f 0�1Þ þ b12f 000 þ b13ðf

00
1 þ f 00�1Þ. ð38Þ

All parameters on the right-hand side of Eq. (38) are known. In the cases where f is not known analytically,
only a fourth-order accurate approximation of f 0 is required.

2.3.2. Two-dimensional case

For a Neumann boundary condition in two dimensions, we assume

qu

qx

����
x¼0

¼ bðyÞ. (39)

The sixth-order approximation of Eq. (39) is

dx0ui ¼
qu

qx

� �
i;j

þ
h2

6

q3u
qx3

� �
i;j

þ
h4

120

q5u
qx5

� �
i;j

þOðh6
Þ. (40)

Using the following appropriate derivatives of Eq. (14), we get

q3u

qx3
¼

qf

qx
� k2 qu

qx
�

q3u
qxqy2

;
q5u
qx5
¼

q3f
qx3
� k2 q

3u

qx3
�

q5u

qx3qy2
, (41)

In our derivation of an Oðh6
Þ scheme, we need a fourth-order approximation of ðq3u=qxqy2Þ in Eq. (41) which

can be written as

q3u
qxqy2

� �
i;j

¼ dxd
2
yui;j �

h2

12

q5u

qxqy4
þ 2

q5u
qx3qy2

� �
i;j

þOðh4
Þ. (42)

Substituting of Eq. (42) into Eq. (41) gives us

q3u
qx3

� �
i;j

¼
qf

qx

� �
i;j

� k2 qu

qx

� �
i;j

� dxd
2
yui;j þ

h2

12

q5u
qxqy4

þ 2
q5u

qx3qy2

� �
i;j

þOðh4
Þ. (43)

The second-order approximation of ðq3u=qx3Þ can be written as

q3u

qx3

� �
i;j

¼
qf

qx

� �
i;j

� k2 qu

qx

� �
i;j

� dxd
2
yui;j þOðh2

Þ. (44)

Using Eqs. (41), (44), the second-order approximation of ðq5u=qx5Þ can be written as

q5u

qx5

� �
i;j

¼
q3f

qx3

� �
i;j

� k2 qf

qx

� �
i;j

þ k4 qu

qx

� �
i;j

þ k2dxd
2
yui;j �

q5u
qx3qy2

� �
i;j

þOðh2
Þ. (45)
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The appropriate derivatives of Eq. (14) gives us:

q3f
qxqy2

¼
q5u

qx3qy2
þ

q5u

qxqy4
þ k2 q3u

qxqy2
)

q5u

qx3qy2
þ

q5u
qxqy4

¼
q3f

qxqy2
� k2 q3u

qxqy2
. (46)

Substituting Eqs. (43), (45), (46) into Eq. (40), and after some modifications we get

dx0ui �
k4h4

120

qu

qx

� �
i;j

þ
h2

6
1þ

k2h2

30

� �
dxd

2
yui;j

¼ 1�
k2h2

6

� �
qu

qx

� �
i;j

þ
h2

6
1�

k2h2

20

� �
qf

qx

� �
i;j

þ
h4

120

q3f
qx3

� �
i;j

þ
h4

72

q3f
qxqy2

� �
i;j

þOðh6
Þ. ð47Þ

Now for ðqu=qxÞi;j on the right-hand side of Eq. (47), we use this approximation

½qu=qx�i;j ¼ dx0ui þ mh2dxd
2
yui;j, (48)

where m is an arbitrary number. Using Eq. (48) in Eq. (47), multiplying by 2h and setting i ¼ 0 will result in

d̂21ðU1;j �U�1;jÞ þ d̂22ðU1;jþ1 þU1;j�1 �U�1;jþ1 �U�1;j�1Þ

¼ 1�
k2h2

6

� �
bj þ

h2

6
1�

k2h2

20

� �
qf

qx

� �
0;j

þ
h4

120

q3f
qx3

� �
0;j

þ
h4

72

q3f

qxqy2

� �
0;j

, ð49Þ

where bj ¼ bðyjÞ and

d̂21 ¼ 1�
k4h4

120
ð1� 2mÞ �

1

6h
1þ

k2h2

30

� �
; d̂22 ¼ �

k4h4

120
mþ

1

12h
1þ

k2h2

30

� �
. (50)

Setting i ¼ 0 in Eq. (26), we get

d20U0;j þ d21ðU1;j þU�1;j þU0;jþ1 þU0;j�1Þ þ d22ðU1;jþ1 þU�1;jþ1 þU1;j�1 þU�1;j�1Þ

¼ b20f 0;j þ b21r
2f 0;j þ b22r

4f 0;j þ b23
q4f

qx2qy2

� �
0;j

. ð51Þ

In order to eliminate all elements with i ¼ �1, we define a constant Z such that Z ¼ d21=d̂21 ¼ d22=d̂22, which
can be obtained by

Z ¼
1

1�
k4h4

120

. (52)

If we multiply Eq. (49) with Z and add to Eq. (51) we will get the final formula for boundary nodes,
d20U0;j þ d21ð2U1;j þU0;jþ1 þU0;j�1Þ þ d22ðU1;jþ1 þU1;j�1Þ

¼ b20f 0;j þ b21r
2f 0;j þ b22r

4f 0;j þ b23
q4f

qx2qy2

� �
0;j

þ Z 1�
k2h2

6

� �
bj þ

h2

6
1�

k2h2

20

� �
qf

qx

� �
0;j

þ
h4

120

q3f
qx3

� �
0;j

þ
h4

72

q3f
qxqy2

� �
0;j

 !
. ð53Þ

All parameters on the right-hand side of Eq. (53) are known. In the cases where f is not known analytically,
only a fourth-order accurate approximation of qf =qx and a second-order approximation of q3f =qx3 and
q3f =qxqy2 are required.

3. Numerical results

In order to validate our sixth-order accurate scheme and examine its behavior, we developed the scheme on
two-model problems in two dimensions. In problem A, we solved

q2u
qx2
þ

q2u
qy2
þ k2uðx; yÞ ¼ ðk2

� 2p2Þ sinðpxÞ sinðpyÞ 0pxp1 and 0pyp1, (54)
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with the pure Dirichlet boundary conditions on all sides of a unit square, that is

uð0; yÞ ¼ uð1; yÞ ¼ uðx; 0Þ ¼ uðx; 1Þ ¼ 0, (55)

and in problem B, we solved

q2u

qx2
þ

q2u
qy2
þ k2uðx; yÞ ¼ ðk2

� 2p2Þ cosðpxÞ sinðpyÞ 0pxp1 and 0pyp1, (56)

with the Neumann boundary condition on the left side of a unit square and Dirichlet boundary conditions on
the remaining three sides, that is

uxð0; yÞ ¼ 0 uð1; yÞ ¼ � sinðpyÞ uðx; 0Þ ¼ uðx; 1Þ ¼ 0. (57)

The exact solutions for problems A and B are uðx; yÞ ¼ sinðpxÞ sinðpyÞ and uðx; yÞ ¼ cosðpxÞ sinðpyÞ,
respectively.

The next step is to solve the resultant linear set of equations. We used LU-decomposition by Gaussian
elimination with pivoting for each set of equations to find values of u at N �N nodes. The code was written in
MATLAB environment using version 7.1. The code was executed on a Pentium 4, 3Ghz PC.

In order to compare the numerical solution Ui;j to the exact solution ui;j, we use two performance metrics
namely l2-norm and order. The metric l2-norm of the error vector e, is defined a

kek2 ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i;j¼0

e2i;j

vuut , (58)

where ei;j ¼ ui;j �Ui;j and N is the number of nodes. The metric order is defined as

Orderðn; nþ 1Þ ¼ log2
kek1ðnÞ

kek1ðnþ 1Þ
, (59)

and measures the order of accuracy of numerical solutions. kek1 in Eq. (59) is called l1-norm of the error
vector and is defined as

kek1 ¼ max
0pi;jpN

ei;j (60)

The l2-norm of the error and the order of accuracy, for different values of N and for k ¼ 10, are presented in
Tables 1 and 2 for problems A and B, respectively. It is clearly seen that the norm of the error behaves like the
order of the scheme. As we multiply N by two, the error decreases by 26 ¼ 64. It means that our scheme has
really the accuracy of order six. This trend can also be seen in Figs. 1 and 2, where the log2kek1 is plotted
versus log2N for both problems A and B, respectively. The slope of the line is �6 which means that the order
of accuracy is 6.

We also examined the behavior of our scheme for different values of k. Figs. 3 and 4 show log2kek2 versus k

with three different value of N for both problems A and B, respectively. Fig. 3 shows that for problem A,
except for 4pkp5 in which the scheme is more sensitive to the value of k, the method behaves robustly with
respect to the wave number. Fig. 4 shows that compared to problem A, the scheme for problem B is more
sensitive to the value of k. However, for any given value of N, the overall error does not increase with the value
Table 1

Numerical results for the problem A, k ¼ 10

N kek2 kek1 Order Execution time of the

proposed scheme (s)

Execution time of the 4-

order FEM (s)

8 1:8561E � 7 3:7586E � 6 0.021 0.84

16 1:4556E � 9 5:2585E � 8 6.16 0.031 3.66

32 1:1750E � 11 7:9975E � 10 6.04 0.094 15.86

64 9:4278E � 14 1:2433E � 11 6.00 0.50 84.14

128 9:5151E � 016 1:9691E � 013 5.98 4.18 502.84
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Fig. 1. log2kek1 versus log2 N for problem A.
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Fig. 2. log2kek1 versus log2 N for problem B.

Table 2

Numerical results for the problem B, k ¼ 10

N kek2 kek1 Order Execution time of the

proposed scheme (s)

Execution time of the 4-

order FEM (s)

8 2:611E � 7 3:368E � 6 0.021 0.86

16 2:048E � 9 8:112E � 8 6.05 0.031 3.71

32 1:653E � 11 1:2337E � 9 6.04 0.11 17.47

64 1:3264E � 13 1:9248E � 11 6.00 0.58 95.11

128 1:0560E � 015 3:0507E � 013 5.98 4.42 541.15

M. Nabavi et al. / Journal of Sound and Vibration 307 (2007) 972–982980
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of k. As the figures show, at some particular values of k in both problems, the accuracy of the method is poor.
This fact can be explained through eigenvalue analysis. The approximate eigenvalues for problem A are given
as, lAm;n ¼ k2

� p2ðm2 þ n2Þ and for problem B, lBm;n ¼ k2
� p2 ðmþ 1=2Þ2 þ n2

� �
(see Ref. [1]). For example,

near k ¼ 4:44 where lA1;1 ! 0, problem A is unstable and near k ¼ 5:663 where lB1;1! 0, problem B is
unstable and the scheme has poor accuracy.

One of the important advantages of the proposed scheme is that in comparison with the finite-element,
boundary-element or spectral-element methods, this method is very fast. A quantitative comparison in terms
of the execution time between the present scheme and fourth-order accurate finite-element method (FEM) is
presented in the last two columns of Tables 1 and 2. The results show that for large number of nodes, the
present scheme is more that 100 times faster than the fourth-order finite-element method.
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Fig. 3. log2kek2 versus k for problem A; �, N ¼ 8; �, N ¼ 16; �, N ¼ 32; k varies in units of 0.2.
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Fig. 4. log2kek2 versus k for problem B; �, N ¼ 8; �, N ¼ 16; �, N ¼ 32; k varies in units of 0.2.
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4. Conclusions

A new 9-point sixth-order accurate compact finite difference scheme for the Helmholtz equation was
developed. A sixth-order accurate symmetrical representation for the Neumann boundary condition was also
developed. Numerical results show that our scheme has the expected accuracy and is more than 100 times
faster than the fourth-order finite-element method. The results also show that the overall error does not
increase with an increase in the wave number.
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